5=10^4/y^2

Simple and best practice solution for 5=10^4/y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5=10^4/y^2 equation:



5=10^4/y^2
We move all terms to the left:
5-(10^4/y^2)=0
Domain of the equation: y^2)!=0
y!=0/1
y!=0
y∈R
We get rid of parentheses
-10^4/y^2+5=0
We multiply all the terms by the denominator
5*y^2-10^4=0
We add all the numbers together, and all the variables
5y^2-10000=0
a = 5; b = 0; c = -10000;
Δ = b2-4ac
Δ = 02-4·5·(-10000)
Δ = 200000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200000}=\sqrt{40000*5}=\sqrt{40000}*\sqrt{5}=200\sqrt{5}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{5}}{2*5}=\frac{0-200\sqrt{5}}{10} =-\frac{200\sqrt{5}}{10} =-20\sqrt{5} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{5}}{2*5}=\frac{0+200\sqrt{5}}{10} =\frac{200\sqrt{5}}{10} =20\sqrt{5} $

See similar equations:

| x3-4x2+13x+50=0 | | x²-5=36x | | x3+4x2+13x+50=0 | | 3b-1=b-4 | | 2s-5=73 | | 10=(9900/(x^2))+21 | | 15^(-3y)=5 | | 859=-91+2b | | -3x-15=-8x+5 | | 859=91-2b | | 2/x-4+1=3/3x-12 | | 59=2x-15 | | 2+1x=4x | | 10/x+3=1 | | 5a+3=26 | | 5/y=12/y-7 | | (x+5)=26 | | (5x-10)=20 | | (7)/(2x-10)=0 | | -5y+16=-4 | | 9x8-4x-5=3x-11 | | -87x-19=56-23x | | 2.2=z-1,1 | | -1/2=-1/3y-2/5 | | 0.3b=0,9 | | 9y2+54y-243=0 | | 3^(x+1)=15 | | 2+7c-4c^=3c+4 | | 3/5x+1=2/3-3x | | –x+8+3x=x-6 | | 12x+3=72 | | 199-v=283 |

Equations solver categories